Comment
Author: Admin | 2025-04-27
Technol. 2019, 53, 13598–13606. [Google Scholar] [CrossRef] [PubMed]McCook, H. Drivers of Bitcoin Energy Use and Emissions. In Proceedings of the 3rd Workshop on Coordination of Decentralized Finance (CoDecFin) 2022, St. George’s, Grenada, 6 May 2022. [Google Scholar]Nikzad, A.; Mehregan, M. Techno-economic, and environmental evaluations of a novel cogeneration system based on solar energy and cryptocurrency mining. Sol. Energy 2022, 232, 409–420. [Google Scholar] [CrossRef]Velický, M. Renewable Energy Transition Facilitated by Bitcoin. ACS Sustain. Chem. Eng. 2023, 11, 3160–3169. [Google Scholar] [CrossRef]Ghaebi Panah, P.; Bornapour, M.; Cui, X.; Guerrero, J.M. Investment opportunities: Hydrogen production or BTC mining? Int. J. Hydrogen Energy 2022, 47, 5733–5744. [Google Scholar] [CrossRef]OSTP. Climate and Energy Implications of Crypto-Assets in the United States; Technical Report; White House Office of Science and Technology Policy: Washington, DC, USA, 2022.Read, C.L. (Ed.) Greenwashing in the Bitcoin Industry. In The Bitcoin Dilemma; Palgrave Macmillan: Cham, Switzerland, 2022; pp. 219–229. [Google Scholar] [CrossRef]GDF. Re: OSTP, Request for Information on the Climate Implications of Digital Assets; Technical Report; Global Digital Finance: London, UK, 2022. [Google Scholar]Gallersdörfer, U.; Klaaßen, L.; Stoll, C. Energy Efficiency and Carbon Footprint of Proof of Stake Blockchain Protocols; Technical Report; Crypto Carbon Ratings Institute: Dingolfing, Germany, 2022. [Google Scholar]CCRI. The Merge: Implications on the Electricity Consumption and Carbon Footprint of the Ethereum Network; Technical Report; Crypto Carbon Ratings Institute: Dingolfing, Germany, 2022. [Google Scholar]CCRI. Energy Efficiency and Carbon Footprint of the Polygon Blockchain; Technical Report; Crypto Carbon Ratings Institute: Dingolfing, Germany, 2022. [Google Scholar]Ibañez, J.I.; Freier, A. Don’t Trust, Verify: Towards a Framework for the Greening of Bitcoin. Soc. Sci. Res. Netw. (SSRN) 2023. [Google Scholar] [CrossRef]Gallersdörfer, U.; Klaaßen, L.; Stoll, C. Accounting for carbon emissions caused by cryptocurrency and token systems. arXiv 2021, arXiv:2111.06477. [Google Scholar] [CrossRef]South Pole; CCRI. Accounting for Cryptocurrency Climate Impacts; Technical Report; South Pole and Crypto Carbon Ratings Institute: Dingolfing, Germany, 2022. [Google Scholar]Stoll, C.; Klaaßen, L.; Gallersdörfer, U. The Carbon Footprint of Bitcoin. Joule 2019, 3, 1647–1661. [Google Scholar] [CrossRef]CCRI. Determining the Electricity Consumption and Carbon Footprint of Proof-of-Stake Networks; Technical Report; Crypto Carbon Ratings Institute: Dingolfing, Germany, 2022. [Google Scholar]SEC. The Enhancement and Standardization of Climate-Related Disclosures for Investors. SEC Proposed Rule; 2022. Available online: https://www.sec.gov/rules/proposed/2022/33-11042.pdf (accessed on 9 May 2023).Mankala, S.; Bansal, U.; Baker, Z. An Innovative Criterion in Evaluating Bitcoin’s Environmental Impact. Soc. Sci. Res. Netw. (SSRN) 2022. [Google Scholar] [CrossRef]de Vries, A.; Gallersdörfer, U.; Klaaßen, L.; Stoll, C. The true costs of digital currencies: Exploring impact beyond energy use. One Earth 2021, 4, 786–789. [Google Scholar] [CrossRef]Mellerud, J. Bitcoin Mining as a Demand Response in an Electric Power System: A Case Study of the ERCOT-System in Texas. Ph.D. Thesis, NORD University, Bodø, Norway, 2021. [Google Scholar]Yazıcı, A.F.; Olcay, A.B.; Arkalı Olcay, G. A framework for maintaining sustainable energy use in Bitcoin mining through switching efficient mining hardware. Technol. Forecast. Soc. Chang. 2023, 190, 122406. [Google Scholar] [CrossRef]Guo, X.; Ma, X.; Qian, T.; Mao, W. Optimization allocation method for flexible load as peaking resource. In Proceedings of the China International
Add Comment