Comment
Author: Admin | 2025-04-28
N = 747 interviews (% of total keywords in transcripts). Figure S3—Cluster analysis of keywords for the n = 68 selected interviews. Figure S4—Cluster analysis of keywords for all n = 747 interviews.FundingThis research received no external funding.Institutional Review Board StatementNot applicable.Informed Consent StatementNot applicable.Data Availability StatementNot applicable.Conflicts of InterestThe author owns bitcoin and shares in a bitcoin ETF but has not received any consulting fees, advising fees, or other remuneration from any Bitcoin-related organization.ReferencesNakamodo, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 24 October 2022).Berg, C.; Davidson, S.; Potts, J. Proof of Work as a three-sided market. Front. Blockchain 2020, 3, 2. [Google Scholar] [CrossRef]Mora, C.; Rollins, R.L.; Taladay, K.; Kantar, M.B.; Chock, M.K.; Shimada, M.; Franklin, E.C. Bitcoin emissions alone could push global warming above 2 °C. Nat. Clim. Change 2018, 8, 931–933. [Google Scholar] [CrossRef]de Vries, A. Bitcoin’s growing energy problem. Joule 2018, 2, 801–805. [Google Scholar] [CrossRef] [Green Version]Carter, N. How Much Energy Does Bitcoin Actually Consume? Harvard Business Review. 5 May 2021. Available online: https://hbr.org/2021/05/how-much-energy-does-bitcoin-actually-consume (accessed on 24 October 2022).Houy, N. Rational mining limits Bitcoin emissions. Nat. Clim. Change 2019, 9, 655. [Google Scholar] [CrossRef]Lei, N.; Masanet, E.; Koomey, J. Best practices for analyzing the direct energy use of blockchain technology systems: Review and policy recommendations. Energy Policy 2021, 156, 112422. [Google Scholar] [CrossRef]Masanet, E.; Shehabi, A.; Lei, N.; Vranken, H.; Koomey, J.; Malmodin, J. Implausible projections overestimate near-term Bitcoin CO2 emissions. Nat. Clim. Change 2019, 9, 653–654. [Google Scholar] [CrossRef] [Green Version]OSTP. Climate and Energy Implications of Crypto-Assets in the United States; White House Office of Science and Technology Policy: Washington, DC, USA, 2022; p. 46. Available online: https://www.whitehouse.gov/wp-content/uploads/2022/09/09-2022-Crypto-Assets-and-Climate-Report.pdf (accessed on 24 October 2022).Reisch, L.A.; Joppa, L.; Howson, P.; Gil, A.; Alevizou, P.; Michaelidou, N.; Appiah-Campbell, R.; Santarius, T.; Köhler, S.; Pizzol, M.; et al. Digitizing a sustainable future. One Earth 2021, 4, 768–771. [Google Scholar] [CrossRef]Sutherland, W.J.; Atkinson, P.W.; Broad, S.; Brown, S.; Clout, M.; Dias, M.P.; Dicks, L.V.; Doran, H.; Fleishman, E.; Garratt, E.L.; et al. A 2021 horizon scan of emerging global biological conservation issues. Trends Ecol. Evol. 2021, 36, 87–97. [Google Scholar] [CrossRef]Sutherland, W.J.; Fleishman, E.; Mascia, M.B.; Pretty, J.; Rudd, M.A. Methods for collaboratively identifying research priorities and emerging issues in science and policy. Methods Ecol. Evol. 2011, 2, 238–247. [Google Scholar] [CrossRef]Fleishman, E.; Blockstein, D.E.; Hall, J.A.; Mascia, M.B.; Rudd, M.A.; Scott, J.M.; Sutherland, W.J.; Bartuska, A.M.; Brown, A.G.; Christen, C.A.; et al. Top 40 priorities for science to inform US conservation and management policy. BioScience 2021, 61, 290–300. [Google Scholar] [CrossRef]Rudd, M.A.; Beazley, K.F.; Cooke, S.J.; Fleishman, E.; Lane, D.E.; Mascia, M.B.; Roth, R.; Tabor, G.; Bakker, J.A.; Bellefontaine, T.; et al. Generation of priority research questions to inform conservation policy and management at a national level. Conserv. Biol. 2011, 25, 476–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]Sutherland, W.J.; Adam, W.M.; Aronson, R.B.; Aveling, R.; Blackburn, T.M.; Broad, S.; Ceballos, G.; Côté, I.M.; Cowling, R.M.; da Fonseca, G.A.B.; et al. One hundred
Add Comment