Comment
Author: Admin | 2025-04-28
Aalst. 2018. Event stream-based process discovery using abstract representations. Knowledge and Information Systems 54, 2 (2018), 407–435.[77]Barbara Weber, Manfred Reichert, and Stefanie Rinderle-Ma. 2008. Change patterns and change support features - Enhancing flexibility in process-aware information systems. Data and Knowledge Engineering 66, 3 (2008), 438–466.[78]Matthias Weidlich, Jan Mendling, and Mathias Weske. 2011. Efficient consistency measurement based on behavioral profiles of process models. IEEE Transactions on Software Engineering 37, 3 (2011), 410–429.[79]A. J. M. M. Weijters, W. M. P. Van Der Aalst, and A. K. Alves De Medeiros. 2006. Process Mining with the HeuristicsMiner Algorithm. Technische Universiteit Eindhoven, Eindhoven.[80]Claes Wohlin. 2014. Guidelines for snowballing in systematic literature studies and a replication in software engineering. In Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering. ACM Press, New York, NY, 1–10.[81]H. Yang, L. Wen, and J. Wang. 2012. An approach to evaluate the local completeness of an event log. In Proceedings of the 2012 IEEE 12th International Conference on Data Mining. IEEE, 1164–1169.[82]Anton Yeshchenko, Claudio Di Ciccio, Jan Mendling, and Artem Polyvyanyy. 2019. Comprehensive process drift analysis with the visual drift detection tool. In Proceedings of the CEUR Workshop Proceedings. CEUR-WS, 108–112.[83]Anton Yeshchenko, Claudio Di Ciccio, Jan Mendling, and Artem Polyvyanyy. 2019. Comprehensive process drift detection with visual analytics. In Conceptual Modeling ER 2019. A. Laender, B. Pernici, E. P. Lim, and J. de Oliveira (Eds.), Springer, 119–135.[84]Anton Yeshchenko, Claudio Di Ciccio, Jan Mendling, and Artem Polyvyanyy. 2021. Visual drift detection for sequence data analysis of business processes.
Add Comment